# Summary of hollow-beam collimation studies in TEL2

G. Stancari, A. Valishev

Tevatron Department Meeting 15 October 2010

Some experimental questions addressed by the hollow-beam collimation project:

- → Can measurements be made parasitically?
- → What is the effect on bunch losses, lifetimes, emittances, luminosity?
- → Does the collimation efficiency increase?

First 3-hour EOS study Wed Oct 13 (store #8171)

#### Calculated beam sizes

#### (Anti)proton beam sizes at TEL2 vs. emittance



# 0.6-in hollow-gun electron beam sizes vs. magnetic field



Worked with pbar bunches A13 and A25

# Hollow-beam collimation concept at TEL2 location in Tevatron



### **TEL2 timing**



# Position / angle scans varying e-beam size / timing



Observed unusual pattern on Schottky. Initially attributed to TEL1 instability.



Turned off both TEL1 and TEL2. The problem persisted and seemed unrelated to the electron lenses.

## **Example of angle scan on A13**



#### Effect on A25 for different ebeam sizes



#### Losses vs. ebeam size



#### **Summary**

- Performed position/angle scans to confirm e/pbar alignment with TEL2 BPMs
- ▶ With aligned hollow e-beam, C:D0AH[bunch] increase was a few 100 Hz (less for larger hole sizes) — no significant increase in losses in other proton/pbar bunches
- ▶ Preliminary measurements of lifetimes, emittances, luminosities vs. e-lens settings (data being analyzed): found good operating conditions (pulsed, 4-7-4 kG), to be confirmed during next study
- With small electron hole, observed that scraping is mostly longitudinal
- ▶ Increase in abort-gap intensity caused by intentional TEL1 turn off (to investigate Schottky spikes)